UNIT VI

Learning

HMMM, PAVLOV... PAVLOV...

... THAT NAME RINGS A BELL
Modules

❖ PART I Module 26: How We Learn and Classical Conditioning
❖ Part II Module 27: Operant Conditioning
❖ Part III Module 28: Operant Conditioning’s Applications, and Comparison to Classical Conditioning
❖ Part IV Module 29: Biology, Cognition, and Learning
❖ Part V Module 30: Learning by Observation
Module 26: How We Learn and Classical Conditioning

Part I

❖ Define learning, and identify some basic forms of learning.
❖ Describe the basic components of classical conditioning and explain behaviorism’s view of learning.
❖ Summarize the processes of acquisition, extinction, spontaneous recovery, generalization, and discrimination.
❖ Explain why Pavlov’s work remains so important, and describe some applications of his work to human health and well-being.
What is learning?

the process of acquiring new and relatively enduring information of behaviors.

❖ By learning we are able to adapt to our environments
❖ Learn to expect and prepare for significant events such as food or pain
❖ Learn to repeat acts that bring rewards and to avoid acts that bring unwanted results
❖ Learn by observing events and others
How do we learn?

- Learn by *associations*
 - by linking two events that occur close together
- How many of you need to have popcorn when you go to the movies?
- Walk on the right side of the hall?
- Sleep a certain way? Have a bedtime ritual?
• Our minds naturally connect events that occur in sequence
 • you see and smell fresh pizza, eat some, and find it satisfying
 • next time you see and smell fresh pizza you will expect eating it will be satisfying again
• Learned associations often operate subtly
 • people using a red pen rather than a black pen to grade will spot more errors leading to lower grades
Learned associations also feed our **habitual** behaviors

- we repeat behaviors in a given context
- movie & popcorn
- route from class to class
- habits form on an average 66 days

Habituation

an organism’s decreasing response to a stimulus with repeated exposure to it.

- Moving from a country setting to a city setting, over time the noisy city will decrease as a stimulus

YouTube Video: Classical Conditioning Frasier Crane
Types of Learning

Associative learning

linking two events that occur close together

❖ the two events may be two stimuli (classical conditioning) or a response and its consequences (operant conditioning)

Classical conditioning

learn to associate two stimuli and thus to anticipate events (*stimulus* = any event or situation that evokes a response)

❖ we learn a flash of lighting signals crack of thunder

Operant conditioning

learn to associate a response (our behavior) and its consequence

❖ we learn to repeat acts followed by good results and avoid acts followed by bad results

Cognitive learning

the acquisition of mental information, whether by observing events, by watching others, or through language
Classical Conditioning (CC)

A type of learning in which one learns to link two or more stimuli and anticipate events.

- Ivan Pavlov (1849-1936) & John B. Watson (1913)

Behaviorism

- The view that psychology (1) should be an objective science that (2) studies behavior without reference to mental processes. Most research psychologists today agree with (1) but not (2).
Fun facts about Ivan Pavlov

❖ Russian scientist that studied digestion of dogs
❖ Before pursuing science as a career, Pavlov wanted to follow in his father’s footsteps and become a priest
❖ Pavlov disagreed with Communism, his fame and his work kept him from persecution. The Soviet government funded him so well that he was able to host international conferences in physiology.
❖ Won a NOBEL prize in 1904 in Physiology and Medicine

YouTube Video: Ivan Pavlov Experiment
Pavlov’s Experiment

- Observation screen
- Container of meat powder
- Revolving drum for recording responses
- Device to count drops of saliva
- Tube for collection of saliva
Terms that go with Classical Conditioning

Conditioned: Learned

Unconditioned: Natural, automatic

- **US:** Unconditioned Stimulus: Automatic, naturally causes something to happen
- **NS or Neutral Stimulus:** Does nothing
- **UR:** Unconditioned Response: Automatic response
- **CS:** Conditioned Stimulus: Learned Stimulus
- **CR:** Conditioned Response: Learned Response

<table>
<thead>
<tr>
<th>Classical Conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditioned response: the dog salivates in response to seeing food.</td>
</tr>
<tr>
<td>Conditioning: every time the dog sees food, a bell is rung.</td>
</tr>
<tr>
<td>Conditioned response: the dog salivates in response to a bell being rung.</td>
</tr>
</tbody>
</table>
Classical Conditioning (Unlearned)

Unconditioned stimulus (US)

in classical conditioning, a stimulus that unconditionally—naturally and AUTOMATICALLY—triggers a response (UR).

Unconditioned response (UR)

in classical conditioning, an UNLEARNED, naturally occurring response (such as salivation) to an unconditioned stimulus (US) (such as food in the mouth).
Neutral stimuli (NS) “does nothing” in classical conditioning a stimulus that elicits NO response before conditioning.
Conditioned stimulus (CS)

in classical conditioning, an originally irrelevant stimulus that, after association with an unconditioned stimulus (US), comes to trigger a conditioned response (CR).

Conditioned response (CR)

in classical conditioning, a learned response to a previously neutral (but now conditioned) stimulus (CS).

YouTube Video: Watch Out
Acquisition

in classical conditioning, the initial stage, when one links a neutral stimulus and an unconditioned stimulus so that the neutral stimulus begins triggering the conditioned response. In operant conditioning, the strengthening of a reinforced response.

YouTube Video: Kitty uses the toilet
Higher-order conditioning

a procedure in which the conditioned stimulus in one conditioning experience is paired with a new neutral stimulus, creating a second (often weaker) conditioned stimulus.

❖ For example, an animal that has learned that a tone predicts food might then learn that a light predicts the tone and begin responding to the light alone.
CLASSICAL (PAVLOVIAN) CONDITIONING

BEFORE

CS = Conditional Stimulus
Neutral signal
No emotional meaning

US = Unconditioned Stimulus
Trigger for hardwired emotions related to survival
reflex = salivation

DURING

CS + US → Reflex or Respondent Behavior

repeat many times

AFTER

Antecedent/Trigger → Conditioned Response
An experimenter sounds a tone just before delivering an air puff to your blinking eye. After several repetitions, you blink to the tone alone. What is the NS, US, UR, CS, and CR?
Practice

Lassie is a border collie dog who loves going for a ride on the back of his owner’s tractor on the sheep farm. Every time his owner would walk towards the farm motorbike, Lassie would wag his tail. Recently, his owner noticed that when he picks up his motorbike keys, Lassie’s tail wags excitedly.
Practice

The Office: Classical Conditioning Video
Extinction

the diminished responding that occurs when the CS (bell) no longer signals an impending US (food).
Spontaneous recovery

the reappearance, after a pause, of an extinguished conditioned response.
Generalization

the tendency, once a response has been conditioned, for stimuli similar to the conditioned stimulus to elicit similar responses.

• Example: -When toddlers taught to fear moving cars they also became afraid of moving trucks and motorcycles

“I don’t care if she is a tape dispenser. I love her.”
Discrimination

In classical conditioning, the learned ability to distinguish between a conditioned stimulus and stimuli that do not signal an unconditioned stimulus.

• Example: Confronted by a guard dog, your heart may race; confronted by a guide dog, it probably will not
Class experiment? Li Hing?
Why is Pavlov’s work important?

❖ Many other responses to many other stimuli can be classically conditioned in many other organisms

❖ classical conditioning is one way that virtually all organisms learn to adapt to their environment

❖ Pavlov showed us how a process such as learning can be studied objectively

❖ salivary response is a behavior measurable in cubic centimeters of saliva
Application to human health & well-being

❖ Former drug users often feel a craving when they are again in the drug using context with people or in places they associate with previous highs

❖ counselors advise addicts to steer clear of these that trigger cravings

❖ Classical conditioning even works on the body’s disease-fighting immune system. When a particular taste accompanies a drug that influences immune response, the taste by itself may come to produce an immune response
Module 27: Operant Conditioning

Part II

❖ Describe operant conditioning, and explain how operant behavior is reinforced and shaped.

❖ Discuss the difference between positive and negative reinforcement, and identify the basic types of reinforcers.

❖ Explain how the different reinforcement schedules affect behavior.

❖ Discuss how punishment and negative reinforcement differ, and explain how punishment affects behavior.

❖ Describe the controversy over Skinner’s views of human behavior.
Operant Conditioning

YouTube Video: Pigeon Operation

YouTube Video: Little Monster
Operant Conditioning

a type of learning in which behavior is strengthened if followed by reinforcer or diminished if followed by a punisher.

- We associate our own actions with consequences
- Behavior that operates on the environment to produce rewarding or punishing stimuli.
Classical vs. Operant Conditioning

- Classical conditioning is a type of learning based on association of **stimuli**. Example: bell (NS) + food (US)

- Operant conditioning is a type of learning based on the association of **consequences with one’s behaviors**

Operant Conditioning
- It’s time for food, I should press the lever.

Classical Conditioning
- There goes the bell, It’s time for food.
Let’s travel back in time...with Tardis
to one of the first founders of Operant Conditioning...Edward Thorndike
The Law of Effect

When a behavior is *rewarded*, it continues, when behavior is *punished*, it discontinues.

Edward Thorndike

- One of the 1st to research this kind of learning (operant): locked cats in a cage
- Behavior changes because of its consequences
- Rewards strengthen behavior
- If consequences are unpleasant, the stimulus-reward connection will weaken
- Process is called *instrumental learning*

YouTube Video: Throndike Puzzle Box

YouTube Video: Thorndike Cat Puzzle
B.F. Skinner

- Used a Skinner Box (Operant Chamber) to prove his concepts
- Skinner used a method called **shaping** to get his animals to do what he wants

A procedure in which **reinforcers such as food guides the animals actions toward closer and closer approximations of the desired behavior**
Shaping

- Shaping is crucial to operant conditioning.
- Humans and animals rarely perform desired behaviors the first time around.
- Need some type of hint
Operant Chamber (Skinner Box)

- Inside the box, the rat presses a bar for a food reward to *reinforce* the behavior.
- Outside, a measuring device (not shown) records the animal’s accumulated responses.

YouTube Video: Skinner's Box
Skinner also came up with **The Air-Crib**. Skinner tried to mechanize childcare through the use of this “baby box,” which maintained the temperature of a child’s environment. Crib was humidity and temperature controlled. Skinner believed it would keep his second daughter from getting cold at night and crying. A fan pushed air from the outside through a surface, adjusting the temp. It was a major failure and critics said it was cruel.
in operant conditioning, a stimulus that elicits a response after association with reinforcement.

- Experiment with rat: The classical music functions as a discriminative stimulus in the presence of which pressing the lever will be reinforced with water. The techno music functions as a discriminative stimulus in the presence of which spinning will be reinforced with water.

YouTube Video: Dancing Rat
Types of Reinforcers

Positive Reinforcement
- Applies a stimulus to increase the frequency of desirable behavior

Negative Reinforcement
- Removes a stimulus to decrease the frequency of undesirable behavior

Reinforcement
- Increases the frequency of desirable behavior

Punishment
- Decreases the frequency of undesirable behavior
Reinforcers *(ways to increase behavior)*

reinforcer is anything that INCREASES a behavior

Positive Reinforcement

the *addition* of something pleasant, that *strengthens* the response

- candy for pushing lever, allowance, words of encouragement

Negative Reinforcement *(“provides relief”)*

the *removal* of something unpleasant, that *strengthens* the response

- hitting the alarm snooze, whining, seat belt buzzing

YouTube Video: Big Bang Theory
Primary vs Conditioned Reinforcers

Primary Reinforcer
an innately reinforcing stimulus, such as one that satisfies a biological need.

• food when hungry
• painful shock

Conditioned (Secondary) Reinforcer
a stimulus that gains its reinforcing power through its association with a primary reinforcer.

• learned through experience
• money
• light turning on in Skinner’s Box
• good grades
Immediate and Delayed Reinforcers

- Unlike rats, humans do respond to delayed reinforcers
 - paycheck at the end of the week
 - good grades at the end of the term
 - trophy at the end of a season
- However, small immediate reinforcers can be more alluring to people
 - texting while studying
 - sex (however for many teens and young adults the immediate gratification of risky behaviors can lead to unprotected sex in passionate moments vs. delayed gratification and safe sex)

YouTube Video: Marshmellow
Continuous Reinforcement

Continuous reinforce the behavior EVERYTIME the behavior is exhibited.

• Useful for strengthening newly learned behaviors or when using shaping procedures to train a behavior.
• Not very common in a natural environment.
• Examples:
 • every time the dog rolls over he gets a treat
 • every time a child hangs up her coat she gets praised
Continuous vs. Intermittent Reinforcement

Partial (Intermittent)

reinforce the behavior only SOME of the times it is exhibited.

• acquisition comes more slowly
• more resistant to extinction
• Examples:
 • salespeople
 • every third time dog rolls over he gets reinforced
• There are four types of intermittent schedules of reinforcement
Schedules of Reinforcement

Fixed Ratio

provides a reinforcement after a *SET* number of responses.

- Starbucks coffee shops reward after 12 purchased
- paying factory workers on a piecework basis

Variable Ratio

provides a reinforcement after a *RANDOM* number of responses

- slot machine players
Fixed Interval

reinforcement schedule that reinforces a response only after a specified time has elapsed.

• Behavior of showing up for work when you’re scheduled is reinforced with a paycheck every two weeks
• Every Wednesday, you receive a 10% discount at the movie theaters

Variable-Interval

a reinforcement schedule that reinforces a response at unpredictable time intervals.

• Rechecking for new Instagram posts
• Fisherman

Vimeo Video: Schedules of Reinforcement
Practice: Ratio or Interval?

1. The "pay out" of money on the slot/poker machines.

2. Taking a snack break after reading ONE chapter in your text.

3. Tasha, is given a "credit" (equal to $1) for every 100 labels she glues to bottles in the sheltered workshop setting.

4. Every time Antonio says answers a question correctly when prompted to do so by the teacher, he is given his favorite reinforcement; a raisin.

5. A bell goes off at random times in the classroom. Tina is rewarded if she is "on task".

6. After a 75 min class, the bell rings and you are rewarded by being able to leave.
Punishment (ways to decrease behavior)

meant to decrease behavior

Positive Punishment

addition of something unpleasant to decrease behavior

- Ex: spray water on a barking dog; give a traffic ticket

Negative Punishment (omission training)

removal of something pleasant to decrease behavior

- Ex: take away teen’s driving privileges; revoke a library card for nonpayment of fines
• Negative punishment works well because the learner can change their behavior and get back to the positive reinforcer

• Ex: Time Out

• Key- You need to find out what is rewarding and isn’t rewarding for each individual
Drawbacks of physically punishing children:

1. Punished behavior is suppressed, not forgotten.
2. Punishment teaches discrimination. Home vs. School?
3. Punishment can teach fear. Most European countries and most US states now ban physical punishment.
4. Physical punishment may increase aggressiveness by modeling aggression as a way to cope with problems.
“Punishment tells you what not to do, reinforcement tells you what to do :) .”
Module 28: How to apply operant conditioning and operant vs. classical conditioning.

Part III

- Operant conditioning can be applied in the school setting, in sports, at work, at home and for **SELF IMPROVEMENT**!
- Example: Build up your self control (study habits, excessive texting, video games, etc.)
 - State your goal in measurable terms, and announce it.
 - Monitor how often you engage in your desired behavior.
 - Reinforce the desired behavior.
Classical vs. Operant Conditioning

<table>
<thead>
<tr>
<th></th>
<th>Classical Conditioning</th>
<th>Operant Conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Idea</td>
<td>Associates events/stimuli.</td>
<td>Associates behavior and events.</td>
</tr>
<tr>
<td>Response</td>
<td>Involuntary, automatic.</td>
<td>Voluntary, operates on the environment.</td>
</tr>
<tr>
<td>Acquisition</td>
<td>Associating events; NS is paired with US and eventually becomes CS.</td>
<td>Associating response with a consequence (reinforcer or punisher)</td>
</tr>
<tr>
<td>Extinction</td>
<td>CR decreases when CS is repeatedly presented alone.</td>
<td>Responding decreases when reinforcement stops.</td>
</tr>
<tr>
<td>Spontaneous Recovery</td>
<td>Reappearance, after a rest period of an extinguished CR.</td>
<td>Reappearance, after a rest period of an extinguished response.</td>
</tr>
<tr>
<td>Generalization</td>
<td>The tendency to respond to stimuli similar to the CS.</td>
<td>Response to similar stimuli is also reinforced.</td>
</tr>
<tr>
<td>Discrimination</td>
<td>Learned ability to distinguish between a CS and other stimuli.</td>
<td>Learns that certain responses, but not others will be reinforced.</td>
</tr>
</tbody>
</table>
Videos

YouTube Video: Classical vs Operant
Module 29 Biology, Cognition, and Learning

Objectives:

❖ Explain how biological constraints affect classical and operant conditioning.
❖ Explain how cognitive processes affect classical and operant conditioning.
❖ Identify the two ways that people learn to cope with personal problems.
❖ Describe how a perceived lack of control can affect people’s behavior and health.
I TOLD YOU...THESE ARE FOR LATER...

BUT I WANT A DOVE BAR NOW!
Biological limits on Classical Conditioning

Today we know that learning is the product of: biological, psychological, and social cultural influences.

- Early behaviorists realized, an animal’s capacity for conditioning is constrained by its biology.
- Each species’ predispositions prepare it to learn the associations that enhance survival
- Example: humans- develop taste aversions; birds which hunt by sight- develop sight aversions
John Garcia and Robert Koelling (1966)

- Rat test to challenge the theory that ALL associations can be learned equally well
- Researched effects of radiation on rats.
- Exposed rats to a particular taste, sight, or sound (CS) and radiation (US) that led to them being sick (UR)
- Rats developed *taste aversions*: an intense dislike or avoidance of food because of its association with an unpleasant or painful stimulus through backward conditioning
 - *(US) did not have to immediately follow (CS). If rats were sickened hours after the food, they still formed an association.*
- *Rats didn’t develop aversions to the sights or sounds.*
- Research supports Darwin’s principle that natural selection favors traits that aid survival.
• Tendency to learn behaviors favored by natural selection.

• humans seem to be naturally disposed to learn associations between the color red and sexuality

• female primates display red when nearing ovation

• in human females: enhanced bloodflow produces the red blush of flirtation and sexual excitation

• red seems to naturally enhance men’s attraction to women. (red-light districts, red background, red lipstick.)
Biological limits on Operant Conditioning

- Animal training that attempts to override biological constraints will probably *not endure* because animals will revert to predisposed patterns.

- Nature sets limits on each species’ capacity for OC.

 - Example: Using food as a reinforcer, you could easily condition a hamster to dig or rear up, because these are among the animal’s natural food-searching behaviors. But you won’t be so successful if you use food as a reinforcer to shape face washing and other hamster behaviors that aren’t normally associated with food or hunger.
Example: Impressed with B.F. Skinner’s results, two graduate students began training dogs, cats, chickens, parakeets, turkeys, pigs, ducks, and hamsters. Formed a company training more than 15,000 animals for movies, traveling shows, etc. Trained Sea World’s first director.

- thought OC would work on almost any response
- learned that animals had biological constraints

Instinctive drift: pigs trained to pick up ‘wooden’ dollars and deposit them in piggy banks, would soon drift back to their natural ways by dropping it, and pushing it with their snouts.
Cognition’s influence on Conditioning

How do cognitive processes affect classical and operant conditioning?

❖ In classical conditioning, animals may learn when to *expect* a US and may be aware of the link between stimuli and responses.

❖ Thought DOES matter. It isn’t only about the association.

❖ therapy for alcohol use disorder: awareness that the nausea is induced by the drug, not the alcohol, will weaken the association.
In operant conditioning, cognitive processes in learning are demonstrated through:

- Latent learning
- Insight learning
- Intrinsic motivation
Latent Learning

Edward Tolman- rats and maze example (rats create a cognitive map = mental picture)

- rats given no obvious reward develop a cognitive map, mental representation of the maze (school campus, cross country runners)

- rats experience latent learning, learning that occurs but is not apparent until there is an incentive to demonstrate it.

- The theory holds that the rat has learned the maze through his wanderings, but we only see evidence of this underlying knowledge once he has drawn on that experience to get something he wants.
Insight learning

the sudden appearance of an answer or solution to a problem.

Wolfgang Kohler

- exposed chimpanzees to new learning tasks and concluded they learn by insight

YouTube Video: Chimpanzee
Motivation

Intrinsic Motivation

a desire to perform a behavior effectively for its own sake

- excessive rewards can destroy intrinsic motivation
- overuse of rewards/bribes lead to overjustification.
- Example: toys or candy for reading can diminish the time they spend reading, doing well in your classes because it makes you feel more competent.

“If I have to be bribed into doing this, it must not be worth doing for its own sake.”
Extrinsic Motivation

a desire to perform a behavior to receive promised rewards or avoid threatened punishment.

❖ Example: Worried about your grades? Earning college credit by doing well on the AP Exam?
❖ If YES, extrinsic motivation fuels your efforts.
Learning and Personal Control

In what two ways do people learn to cope with personal problems?

Coping

alleviating stress using emotional, cognitive, or behavioral methods.

1. Problem-focused coping

attempting to alleviate stress directly — by changing the stressor or the way we interact with that stressor. (used when we feel a sense of control over situation)

2. Emotion-based coping

attempting to alleviate stress by avoiding or ignoring a stressor and attending to emotional needs related to one’s stress reaction. (used when we believe we have no control over situation)
Learned helplessness

the hopelessness and passive resignation an animal or human learns when unable to avoid repeated aversive (strong dislike) events.

❖ Learned helplessness is one of the roots of depression.
❖ When humans are repeatedly faced with traumatic events over which they have no control over. They become: hopeless, helpless, and depressed.
❖ When subjects' behavior has no effect upon reward, the result is apathy or unresponsiveness; they simply give up and no longer try.
❖ Martin Seligman Experiment
 ❖ dogs were strapped in a harness and given repeated shocks, with no opportunity to avoid them
 ❖ later, when placed in another situation where they could escape the punishment by simply leaping a hurdle, the dogs cowered as if without hope
Module 30

Learning by Observation
Module 30

- Describe the process of observational learning, and explain how some scientists believe it is enabled by mirror neurons.

- Discuss the impact of prosocial modeling and of antisocial modeling.
Observational Learning

Can we learn new behaviors and skills without conditioning and reward? Without direct experience?

❖ Yes, and one of the ways we do so is by **observational learning**: learning by observing others. Also called **social learning**.

❖ Skills required: **mirroring**, being able to picture ourselves doing the same action, **cognition**, noticing consequences and association, and **modeling**, the process of observing and imitating specific behaviors.

Bandura suggests we are especially likely to learn from people we perceive as similar to ourselves, as successful, as admirable.
Mirror Neurons

Frontal lobe neurons that fire when performing certain actions or when observing another doing so. The brain’s mirroring of another’s action may enable imitation and empathy.

❖ Allows us to grasp others’ states of mind.

❖ Example: In one experiment, a monkey watching another selecting certain pictures to gain treats learned to imitate the order of choices.

❖ Example: fMRI scans and PET scans show similar brain activity between a person experiencing pain, and their loved one empathizing and watching it happen. (movie character smoking, smokers’ brains simulate smoking.)
Observational Learning Process

Modeling

We look, we mentally imitate, and we learn.

Vicarious Conditioning

(experienced indirectly, through others)

Vicarious reinforcement and **punishment** means our choices are affected as we see others get consequences for their behaviors.
Bobo Doll Experiment

❖ Albert Bandura
❖ pioneer researcher in observational learning
❖ Bobo Doll Experiment (1961)
 ❖ children exposed to an adult taking out their frustrations on a Bobo doll would imitate the very acts (punching, kicking, throwing) they had observed and used the very same novel stimuli (“sock him in the nose”) they had heard
❖ YouTube Video: Bobo Doll
Prosocial Effects of Observational Learning

What is the impact of prosocial modeling?

Prosocial Behavior

positive, constructive, helpful behavior

❖ Prosocial models can have prosocial effects!

❖ Behavior modeling is most effective when it is consistent

❖ Able to teach actions which benefit others, contribute value to groups, and follow moral codes and social norms

❖ Example: parents try to teach positive behavior through lectures, but it may be taught best though modeling.

❖ Example: business organizations use behavior modeling to help new employees learn communications, sales, and customer service skills.
Antisocial effects of Observational Learning

What happens when we learn from models who demonstrate antisocial behavior, actions that are harmful to individuals and society?

❖ Children who witness violence in their homes, but not physically harmed themselves, may grow to hate violence but still may become violent more often than the average child.

❖ Perhaps this is a result of “the Bobo doll effect?” Under stress, when we don’t have time to THINK rationally, we do what has been modeled for us.
Media Models of Violence

Do we learn antisocial behavior such as violence from indirect observations of others in the media?

- TV shows and Internet videos are a POWERFUL source of observational learning. They teach us about a CERTAIN type of life that is far from reality.

- Research shows that viewing media violence leads to increased aggression (fights) and reduced prosocial behavior (such as helping an injured person).
An analysis of more than 3000 network and cable programs aired during one closely studied year revealed that nearly 6 in 10 featured violence, that 74% of the violence went unpunished, that 58% did not nearly show the victims’ pain, that nearly half the incidents involved ‘justified’ violence, and that nearly half involved an attractive perpetrator.

This violence-viewing effect might be explained by imitation, and also by desensitization (prolonged exposure) toward pain in others.